首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1913篇
  免费   132篇
  2023年   5篇
  2022年   4篇
  2021年   31篇
  2020年   16篇
  2019年   27篇
  2018年   54篇
  2017年   44篇
  2016年   65篇
  2015年   104篇
  2014年   122篇
  2013年   149篇
  2012年   176篇
  2011年   127篇
  2010年   106篇
  2009年   90篇
  2008年   145篇
  2007年   139篇
  2006年   99篇
  2005年   96篇
  2004年   97篇
  2003年   85篇
  2002年   73篇
  2001年   27篇
  2000年   36篇
  1999年   24篇
  1998年   15篇
  1997年   12篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   9篇
  1992年   4篇
  1991年   8篇
  1990年   4篇
  1989年   6篇
  1988年   4篇
  1985年   2篇
  1984年   4篇
  1980年   2篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1971年   2篇
  1970年   3篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1964年   1篇
排序方式: 共有2045条查询结果,搜索用时 125 毫秒
21.
Influenza viruses are respiratory pathogens that continue to pose a significantly high risk of morbidity and mortality of humans worldwide. Vaccination is one of the most effective strategies for minimizing damages by influenza outbreaks. In addition, rapid development and production of efficient vaccine with convenient administration is required in case of influenza pandemic. In this study, we generated recombinant influenza virus hemagglutinin protein 1 (sHA1) of 2009 pandemic influenza virus as a vaccine candidate using a well-established bacterial expression system and administered it into mice via sublingual (s.l.) route. We found that s.l. immunization with the recombinant sHA1 plus cholera toxin (CT) induced mucosal antibodies as well as systemic antibodies including neutralizing Abs and provided complete protection against infection with pandemic influenza virus A/CA/04/09 (H1N1) in mice. Indeed, the protection efficacy was comparable with that induced by intramuscular (i.m.) immunization route utilized as general administration route of influenza vaccine. These results suggest that s.l. vaccination with the recombinant non-glycosylated HA1 protein offers an alternative strategy to control influenza outbreaks including pandemics.  相似文献   
22.
Amethanolic extract of Dipsacus asper, having anti-diabetic activity, was examined as a possible aldose reductase (ALR2) inhibitor, a key enzyme involved in diabetic complications. Bioactivity guided fractionation led to the isolation of ten compounds, ursolic acid (1), oleanolic acid-3-O-α-L-arabinopyranoside (2), daucosterol (3), hederagenin-3-O-α-L-arabinopyranoside (4), sweroside(5), caffeic acid (6), esculetin (7), protocatechualdehyde (8), loganin (9), and vanilic acid (10) from the ethyl acetate fraction of D. asper methanol extract. Among them, compounds 4, 6, 7, and 8 exhibited inhibitory effects on aldose reductase, with IC50 values of 23.70, 16.71, 34.36, and 21.81 μM, respectively. This is the first report on the isolation of these compounds from D. asper, and the ALR2 inhibitory activity of hederagenin-3-O-α-L-arabinopyranoside. These results suggest the successful use of the extract of D. asper for ameliorating diabetic complications.  相似文献   
23.

Background

To characterize changes in global protein expression in kidneys of transgenic rats overexpressing human selenoprotein M (SelM) in response to increased bioabivility of selenium (Sel), total proteins extracted from kidneys of 10-week-old CMV/hSelM Tg and wild-type rats were separated by 2-dimensional gel electrophoresis and measured for changes in expression.

Results

Ten and three proteins showing high antioxidant enzymatic activity were up- and down-regulated, respectively, in SelM-overexpressing CMV/hSelM Tg rats compared to controls based on an arbitrary 2-fold difference. Up-regulated proteins included LAP3, BAIAP2L1, CRP2, CD73 antigen, PDGF D, KIAA143 homolog, PRPPS-AP2, ZFP313, HSP-60, and N-WASP, whereas down-regulated proteins included ALKDH3, rMCP-3, and STC-1. After Sel treatment, five of the up-regulated proteins were significantly increased in expression in wild-type rats, whereas there were no changes in CMV/hSelM Tg rats. Only two of the down-regulated proteins showed reduced expression in wild-type and Tg rats after Sel treatment.

Conclusions

These results show the primary novel biological evidences that new functional protein groups and individual proteins in kidneys of Tg rats relate to Sel biology including the response to Sel treatment and SelM expression.  相似文献   
24.

Background

The objective of this study was to determine whether acute histologic chorioamnionitis is associated with adverse neonatal outcomes in late preterm infants who were born after preterm PROM.

Methodology/Principal Findings

The relationship between the presence of acute histologic chorioamnionitis and adverse neonatal outcome was examined in patients with preterm PROM who delivered singleton preterm newborns between 34 weeks and 36 6/7 weeks of gestation. Nonparametric statistics were used for data analysis. The frequency of acute histologic chorioamnionitis was 24% in patients with preterm PROM who delivered preterm newborns between 34 weeks and 36 6/7 weeks of gestation. Newborns born to mothers with histologic chorioamnionitis had significantly higher rates of adverse neonatal outcome (74% vs 51%; p<0.005) than those without histologic chorioamnionitis. This relationship remained significant after adjustment for gestational age at preterm PROM, gestational age at delivery, and exposure to antenatal corticosteroids.

Conclusions/Significance

The presence of acute histologic chorioamnionitis is associated with adverse neonatal outcome in late preterm infants born to mothers with preterm PROM.  相似文献   
25.
Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI) for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles) or 200 (for Pacinian corpuscles) Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.  相似文献   
26.

Background

A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process.

Methodology/Principal Findings

The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process.

Conclusions/Significance

CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation.  相似文献   
27.

Background

Human embryonic stem cells (hESCs) are a promising and powerful source of cells for applications in regenerative medicine, tissue engineering, cell-based therapies, and drug discovery. Many researchers have employed conventional culture techniques using feeder cells to expand hESCs in significant numbers, although feeder-free culture techniques have recently been developed. In regard to stem cell expansion, gap junctional intercellular communication (GJIC) is thought to play an important role in hESC survival and differentiation. Indeed, it has been reported that hESC-hESC communication through connexin 43 (Cx43, one of the major gap junctional proteins) is crucial for the maintenance of hESC stemness during expansion. However, the role of GJIC between hESCs and feeder cells is unclear and has not yet been reported.

Methodology/Principal Findings

This study therefore examined whether a direct Cx43-mediated interaction between hESCs and human adipose-derived stem cells (hASCs) influences the maintenance of hESC stemness. Over 10 passages, hESCs cultured on a layer of Cx43-downregulated hASC feeder cells showed normal morphology, proliferation (colony growth), and stemness, as assessed by alkaline phosphatase (AP), OCT4 (POU5F1-Human gene Nomenclature Database), SOX2, and NANOG expression.

Conclusions/Significance

These results demonstrate that Cx43-mediated GJIC between hESCs and hASC feeder cells is not an important factor for the conservation of hESC stemness and expansion.  相似文献   
28.
The vestibular system detects motion of the head in space and in turn generates reflexes that are vital for our daily activities. The eye movements produced by the vestibulo-ocular reflex (VOR) play an essential role in stabilizing the visual axis (gaze), while vestibulo-spinal reflexes ensure the maintenance of head and body posture. The neuronal pathways from the vestibular periphery to the cervical spinal cord potentially serve a dual role, since they function to stabilize the head relative to inertial space and could thus contribute to gaze (eye-in-head + head-in-space) and posture stabilization. To date, however, the functional significance of vestibular-neck pathways in alert primates remains a matter of debate. Here we used a vestibular prosthesis to 1) quantify vestibularly-driven head movements in primates, and 2) assess whether these evoked head movements make a significant contribution to gaze as well as postural stabilization. We stimulated electrodes implanted in the horizontal semicircular canal of alert rhesus monkeys, and measured the head and eye movements evoked during a 100ms time period for which the contribution of longer latency voluntary inputs to the neck would be minimal. Our results show that prosthetic stimulation evoked significant head movements with latencies consistent with known vestibulo-spinal pathways. Furthermore, while the evoked head movements were substantially smaller than the coincidently evoked eye movements, they made a significant contribution to gaze stabilization, complementing the VOR to ensure that the appropriate gaze response is achieved. We speculate that analogous compensatory head movements will be evoked when implanted prosthetic devices are transitioned to human patients.  相似文献   
29.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here.Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.  相似文献   
30.
Xylose utilization is inhibited by glucose uptake in xylose-assimilating yeasts, including Candida tropicalis, resulting in limitation of xylose uptake during the fermentation of glucose/xylose mixtures. In this study, a heterologous xylose transporter gene (At5g17010) from Arabidopsis thaliana was selected because of its high affinity for xylose and was codon-optimized for functional expression in C. tropicalis. The codon-optimized gene was placed under the control of the GAPDH promoter and was integrated into the genome of C. tropicalis strain LXU1 which is xyl2-disrupted and NXRG (codon-optimized Neurospora crassa xylose reductase) introduced. The xylose uptake rate was increased by 37–73 % in the transporter expression-enhanced strains depending on the glucose/xylose mixture ratio. The recombinant strain LXT2 in 500-mL flask culture using glucose/xylose mixtures showed a xylose uptake rate that was 29 % higher and a xylitol volumetric productivity (1.14 g/L/h) that was 25 % higher than the corresponding rates for control strain LXU1. Membrane protein extraction and Western blot analysis confirmed the successful heterologous expression and membrane localization of the xylose transporter in C. tropicalis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号